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Figure 1: Overview of SCENEWEAVER, a reflective agentic framework built on standardized and extensible tool
interfaces that unifies the strengths of existing scene synthesis methods to produce visually realistic, physically
plausible, instruction-aligned 3D scenes.

Abstract

Indoor scene synthesis has become increasingly important with the rise of Em-
bodied AI, which requires 3D environments that are not only visually realistic but
also physically plausible and functionally diverse. While recent approaches have
advanced visual fidelity, they often remain constrained to fixed scene categories,
lack sufficient object-level detail and physical consistency, and struggle to align
with complex user instructions. In this work, we present SCENEWEAVER, a re-
flective agentic framework that unifies diverse scene synthesis paradigms through
tool-based iterative refinement. At its core, SCENEWEAVER employs a language
model-based planner to select from a suite of extensible scene generation tools,
ranging from data-driven generative models to visual- and LLM-based methods,
guided by self-evaluation of physical plausibility, visual realism, and semantic
alignment with user input. This closed-loop reason-act-reflect design enables the
agent to identify semantic inconsistencies, invoke targeted tools, and update the
environment over successive iterations. Extensive experiments on both common
and open-vocabulary room types demonstrate that SCENEWEAVER not only outper-
forms prior methods on physical, visual, and semantic metrics, but also generalizes
effectively to complex scenes with diverse instructions, marking a step toward
general-purpose 3D environment generation.

∗ Equal contribution. � Corresponding authors.
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1 Introduction

3D scene synthesis [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] has been a long-standing research topic in
computer vision and graphics, primarily focused on generating visually realistic 3D environments
for applications such as interior design, virtual content creation, and gaming asset creation. With
the recent rise of embodied artificial intelligence (EAI), the scope of scene synthesis has naturally
expanded to accommodate new functional demands [12, 13, 3]. Beyond achieving visual realism,
scenes are now expected to be physically interactable within simulators and precisely controllable
in response to task-specific user instructions, particularly in constructing tailored environments
for training and evaluating embodied agents. These extended requirements pose significant new
challenges for 3D scene synthesis.

Despite rapid progress, existing methods fall short of holistically addressing the requirements for
realistic, controllable, and physically plausible scene synthesis, as summarized in Tab. 1. Rule-based
systems [12, 14] ensure physical validity through hand-crafted constraints, but lack extensibility
across diverse scene types and offer limited controllability due to their rigid, manually defined logic.
Data-driven generative learning methods [15, 2, 3], while more flexible, are constrained by the scarcity
of high-quality, scene-level 3D datasets (e.g., 3D-Front [16]). As a result, they typically produce
visually realistic scenes within pre-defined categories but generalize poorly to novel scene types or
layout instructions. Methods based on Large Language Models (LLMs) approaches [7, 8, 9, 10, 11]
offer stronger open-vocabulary understanding and semantic flexibility, yet often struggle with spatial
reasoning and 3D awareness, resulting in physically implausible rearrangements. Collectively, these
limitations highlight that no single approach is sufficient to meet the combined demands of realism,
physical plausibility, and controllability. This motivates the need for a comprehensive and adaptable
scene synthesis framework capable of synthesizing high-quality 3D scenes.

Inspired by recent advances in LLM-based agents, which demonstrate strong reasoning and planning
capabilities in complex tasks, recent works in 3D scene synthesis have begun to move beyond
monolithic approaches by decomposing the generation process into sequential compositions of
modular synthesis components, forming multi-step pipelines coordinated by LLMs. A common
strategy starts with generating coarse, scene-level layouts through interaction with LLMs [10, 8, 9, 7],
followed by progressive refinement using pre-trained 2D generative models or Multi-modal LLMs
(MLLMs) for asset generation [17, 18], object placement [19, 20, 21], and texture inpainting [11, 22].
While these pipelines leverage both the specialization of individual models and the semantic flexibility
of MLLMs, they remain largely “static”, i.e., their planning and execution are governed by fixed
prompts and hard-coded module invocation logic over a limited set of synthesis tools. This design
overlooks the potential to couple reasoning with adaptive decision-making based on generation
feedback, and the ability to seamlessly integrate diverse synthesis tools through a unified interface.
As a result, these systems fall short of enabling self-refining and extensible agents, leaving the full
potential of multi-modal foundation models underutilized.

To address the aforementioned challenges, we propose SCENEWEAVER, a reflective agentic frame-
work that enables MLLMs to synthesize 3D scenes in a self-refining manner through a set of easily
extensible tool interfaces. Specifically, SCENEWEAVER consists of two core components: 1) a
standardized and extensible tool interface that abstracts diverse scene synthesis methods into mod-
ular tools operating at different levels of generation granularity; 2) a self-reflective planner that
dynamically selects tools and iteratively refines the scene by reasoning over feedback from previous
generations, while applying the planned modifications and enforcing physical plausibility with a
physics-aware executor. This framework enables closed-loop, feedback-driven scene evolution, where
the agent identifies areas for improvement, invokes appropriate tools, and updates the scene under
physical constraints. Extensive experiments show that SCENEWEAVER achieves new state-of-the-art
across a broad range of scene types and open-vocabulary instructions, demonstrating strong visual
realism, physical plausibility, and precision in instruction following. We also provide ablation studies
showing that the self-refining design is critical to achieving high-quality scene synthesis and that
integrating diverse tools leads to significant performance improvement compared to monolithic
approaches. In summary, our contributions are as follows:

• We propose SCENEWEAVER, the first reflective agentic framework for 3D scene synthesis, enabling
MLLMs to iteratively refine scenes through feedback-driven planning with modular tools.
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Table 1: Comparison of different scene synthesis methods. A single approach is not sufficient to meet
the combined demands of realism, physical plausibility, and controllability, which motivates the need for a
comprehensive and adaptable scene synthesis framework.

Previous Work Physical
Plaus.

Small
Object

Open
Vocab.

#Room
Type Real Accurate Large

Scale CAD Source Developing Platform Method

ATISS [15] ✗
✗ ✗ 3 ✓ ✗ ✓ 3D FUTURE

-
Model-basedDiffuScene [2] ✗ -

PhyScene [3] ✓ -

Infinigen [14] ✓
✓ ✗

5+
✗ ✓ ✓

Generated Blender Rule-basedProcthor [12] ✓ 4 RoboTHOR AI2-THOR

MetaScene [19] ✓ ✓ ✓ 30+ ✓ ✗ ✗ Mixed -
Vision-basedACDC [20] ✓ ✓ ✓ Unlimited ✓ ✗ ✓ Behavior OmniGibson

Architect [17] ✓ ✓ ✓ Unlimited ✓ ✗ ✓ Mixed -

LayoutGPT [9] ✗ ✗

✓ Unlimited ✓ ✗ ✓

3D FUTURE -

LLM-based
Holodeck [10] ✓ ✓ Mixed AI2-THOR
AnyHome [11] ✗ ✗ Generated -
I-Design [7] ✓ ✗ Objaverse -
LayoutVLM [8] ✓ ✗ Objaverse -

SCENEWEAVER ✓ ✓ ✓ Unlimited ✓ ✓ ✓ Mixed Blender / IsaacSim Unified

• SCENEWEAVER introduces a comprehensive reason-act-reflect paradigm that formalizes the plan-
ner’s decision making, reflection, and action protocols, along with a standardized and extensible
tool interface for synergizing diverse scene synthesis methods based on their respective strengths.

• Extensive experiments on open-vocabulary scene synthesis demonstrate that SCENEWEAVER
outperforms existing methods in both visual realism, physical plausibility, and instruction following.
We also provide meticulously designed ablation studies to highlight the effectiveness of the proposed
reflective agentic framework.

2 Related work

3D Indoor Scene Synthesis 3D indoor scene synthesis is typically formulated as a layout prediction
task, where objects are represented by 3D bounding boxes and semantic labels [16, 15, 8]. Data-driven
generative models [15, 2, 3], trained on datasets like 3D-FRONT [16], learns realistic but coarse scene
layouts, constrained by the limited variety and level of detail of scenes in the dataset. To address this
limitation, recent work leverages language and 2D foundation models to provide missing priors on
scene types and fine-grained details. LLM-based methods [7, 8, 9, 10, 11] combine textual prompts
with rule-based systems [12, 14] to generate diverse scenes, but often suffer from hallucinations
and the poor spatial reasoning capability of LLMs. Meanwhile, methods based on 2D foundation
models improve scene detail and spatial coherence through image-conditioned generation [17, 18] or
real-to-sim conversions [20, 19]. However, they remain limited by the capability of image generation
models and challenges in 2D-to-3D lifting, exhibiting semantic or physical inconsistencies under
complex scene generation instructions. Overall, no existing paradigm sufficiently balances realism,
physical plausibility, and controllability. To this end, we propose SCENEWEAVER, a unified and
extensible self-reflective agentic framework that integrates the complementary strengths of existing
approaches for high-quality 3D scene synthesis.

Spatial Reasoning of MLLMs Recent works have explored using the reasoning and generative
abilities of MLLMs for 3D scene synthesis. To address their limitations in spatial reasoning, these
methods often incorporate structured constraints and external logic to enhance physical plausibility.
Some approaches apply rule-based constraints as post-processing to correct implausible object
placements [10], while others adopt multi-agent or role-based decomposition to reduce hallucinations
and improve coherence [7]. Additionally, efforts have been made to guide generation through scene-
aware tools, such as programmatic layout representations [8] or geometric reasoning modules [23].
Although these systems MLLMs with reasoning chains and post-optimization mechanisms, they
typically rely on fixed toolsets and predefined constraints, limiting their flexibility and extensibility.
In contrast, SCENEWEAVER isdesigned to support a diverse and extensible set of tools through a
standardized interface, enabling dynamic tool selection and composition via a reflective planning
mechanism for reasoning-driven 3D scene synthesis.

LLM-based Agentic Framework A growing body of work leverages LLMs as autonomous agents
for complex tasks across domains such as scientific discovery [24], clinical decision-making [25],
and visual reasoning [26]. As LLMs’ reasoning capabilities gradually advance, the focus has
shifted from narrow task-specific agents to general-purpose agentic frameworks [27, 28, 29, 30] that
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Figure 2: The SCENEWEAVER pipeline. Following a reason–act–reflect paradigm, SCENEWEAVER iteratively
refines scenes by integrating the strengths of diverse scene synthesis tools.

coordinate multiple specialized tools to solve complex problems collaboratively. Recent work [31]
has demonstrated that the extensibility and planning capabilities of LLMs, i.e., the ability to flexibly
integrate diverse tools and coordinate them effectively, are crucial for solving complex reasoning
tasks and lead to significant performance gains. However, these insights on agent development
remain largely underexplored in the context of 3D tasks. Motivated by its relevance to 3D scene
synthesis, SCENEWEAVER draws on advances in LLM-based agentic frameworks and adopts the
OpenManus [30] platform to implement an agentic framework, with a particular emphasis on
extensibility of tools and the reason-act-react paradigm for 3D scene synthesis.

3 The SCENEWEAVER Framework

In this section, we present the design of SCENEWEAVER, an agentic framework that enables LLMs to
perform feedback-guided, self-reflective 3D scene synthesis using a diverse set of scene synthesis tools.
The SCENEWEAVER framework comprises two key components: 1) a standardized tool interface
that organizes the majority of existing scene synthesis methods into modular tools categorized by
their synthesis granularity (Sec. 3.1); 2) a self-reflective planner that dynamically selects tools,
iteratively refines the scene based on feedback, and performs physics-based optimization to enhance
physical plausibility. An overview of SCENEWEAVER is provided in Fig. 2.

Before describing each component, we formalize the overall problem setup. Given a user query
q ∈ Q and a tool set D = {di}ni=1, SCENEWEAVER aims to synthesize a 3D scene sT through T
iterative refinement steps. Each scene state st is represented by both 3D layout information and also
2D renderings from selected camera views (as illustrated in Sec. A.1). At each step t ∈ [1, ..., T ],
the self-reflective planner receives a reflection vt−1 including quantitative scores and explanatory
justifications assessing the quality and instruction alignment of the previous scene st−1. Based on
this feedback, the planner selects a tool dt ∈ D to refine, and the physics-aware executor applies the
refinement and performs physical optimization to produce the updated scene st. A new reflection vt
is then computed for st, and the process repeats.

3.1 Standardized Scene Synthesis Tool Interface

Tool Catalog As summarized in Tab. 1, existing 3D scene synthesis methods vary widely in
their design and focus. To leverage their complementary strengths within a unified framework, we
introduce a standardized tool interface that abstracts each method as a modular synthesis tool. These
tools are categorized according to their synthesis granularity:

• Scene Initializer: This class of tools generates full-scene layouts and serves as the starting point for
synthesis. We categorize initializers into three types: 1) data-driven generative models [15, 2, 3],
which offer scalable generation learned from human-designed indoor scene datasets but are limited
to pre-defined scene types; 2) real-to-sim methods [20, 19] that create digital twins or cousins
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customization.
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Initializer: LLM - LayoutGPT
Description:Using GPT to generate the foundamental scene.

Supported Room Types: Any room type.
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Strengths: Align well with user demand. Adaptive to complex 

user requirement. Flexible with respect to room design and 
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Task description: You are a scene designer, an expert agent in 
3D scene generation and spatial optimization. Your mission is to 
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Memory of step t-1
1. Planning ideas
Correct the rotation of washing machine.
2. Tool Selection & Execution Results
Refiner: VLM - Update Rotation. Success.
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Real: 8, Functional: 7, Layout: 8, Completion: 5. 
The lack of decor or daily supplies makes the room feel unfinished.
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1. Analyse reflection of step t-1, check if previous problems have 
been solved. The rotation problem has been solved.
2. Find the most serious problem to solve in this step.
The completion score is low. Add laundry objects in the shelf.
3. List appropriate tools with 0-1 confidence score, and choose 
one tool for this step. Use Implementer: LLM: GPT to add 
objects.
4. Clearly explain the expectation and suggest next steps. 
Objects should be added into the shelf. If success, evaluate the 
layout and proceed to finer adjustments. If not, try another strategy 
with a different tool.  

t-2

t-1

Figure 3: A visualization of standardized tool interfaces and the reflective planning process. The self-
reflective planner leverages diverse tools to first correct the misoriented laundry machine and then enhance scene
details by adding small objects to the shelf (right).

of realistic scenes, providing detailed high-quality scenes but with limited diversity and scale; 3)
LLM-based [9, 10, 8, 7] that enable open-vocabulary and flexible generation from natural language,
but often exhibit semantic or physical inconsistencies due to limited spatial reasoning.

• Microscene Implementer: This class of tools adds micro scene details (e.g., small objects placed
on desks or shelves) that are often missing from whole-scene synthesis methods. We consider
two types of implementers: 1) LLM-based tools that generate microscene layouts conditioned on
local context (e.g., placing a keyboard and monitor on a desk), offering semantic diversity but
prone to spatial placement errors (e.g., misaligned or backward-facing objects); and 2) 2D-guided
tools [17, 20], which synthesize reference images of microscene regions using pre-trained 2D
generators, then mapping corresponding 3D assets to the predicted layout. While still constrained
by the spatial reasoning capability of 2D models, the 2D-guided tools enhances visual realism and
relative spatial coherence between objects.

• Detail Refiner: While previous tools synthesize scenes at various granularities, they often introduce
errors such as object misplacement or implausible configurations. Refiner tools address these issues
by enforcing constraints and refining object poses. First, we extend on rule-based scene synthesis
methods [12, 14] and use LLMs to convert user queries into relational constraints that guide object
placement. Second, to compensate for layout generators that neglect object orientation and scale,
we incorporate dedicated tools to refine objects’ full 6D pose (location, rotation, scale). Finally, an
LLM-based remover identifies and eliminates semantically incorrect or severely misplaced objects.

Standardized Tool Cards To ensure flexible integration of new tools into SCENEWEAVER, we
define standardized tool cards that guide the planner in deciding when and how to invoke each
synthesis method based on their specialized strengths. Examples are shown in Fig. 3. Each tool card
contains mandatory fields, including tool description, applicable scenarios, usage constraints, and
required input parameters. We also inc lude example usage and tool-specific strengths to help the
planner select the most appropriate tool based on user queries or iterative feedback. For initializer
tools, supported room types are listed to reflect model-specific limitations and enable the agent
to infer room types from queries when evaluating tool applicability. This modular design ensures
seamless integration, extension, and replacement of scene synthesis methods without modifying the
overall agentic framework.

3.2 Feedback-driven Self-reflective Planning

Reflection Generation To support self-reflective planning in SCENEWEAVER, we first define
the process for generating self-evaluated feedback over synthesized scenes. Specifically, given
a generated scene st, we invoke an MLLM (e.g., GPT-4) to produce a reflection vt comprising
two components: 1) physical metrics, including collision scores, room boundary violations, and
object count and diversity; and 2) perceptual metrics, including visual realism, functionality, layout
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coherence, alignment with the user query, and scene completeness. In addition to scalar scores,
the MLLM generates natural language justifications and improvement suggestions as input to the
planner. This feedback forms a core reasoning signal for the planner in the subsequent step, enabling
it to assess tool effectiveness and adapt its strategy accordingly. If the feedback indicates abnormal
degradation (e.g., sharp drops in quality or constraint violations), the planner can roll back and replan
the current step.

Self-reflective Planning Given the user query q, a tool set D, and memory of previously selected
tools, generated scenes, and reflection feedback mt = (dt−l:t−1, st−l:t−1, vt−l:t−1), where l de-
termines the length of memory, the planner in SCENEWEAVER determines the most appropriate
refinement action. Leveraging context-aware function-calling capabilities in LLMs, the planner first
summarizes the current context (i.e., memory) and identifies the most critical problem to address
at step t. It then ranks candidate tools by suitability and confidence, selects the most promising
tool dt ∈ D, and generates tool-specific instructions (e.g., "populate empty tables with contextually
relevant objects"). Tool confidence scores are dynamically adjusted based on past performance, i.e.,
failures reduces confidence, and repeated failures trigger replanning by reprioritizing refinement
targets and selecting alternative tools. Our self-reflective planner is built on the OpenManus plat-
form [30], following the ReAct-style [32] reasoning and planning pipeline. We provide illustrative
examples in Fig. 3 and more detailed prompts in Sec. A.2.

Physics-aware Execution of Plans Since most tools described in Sec. 3.1 operate on 3D bounding
box layouts, a physics-aware executor is required to replace these drafts with concrete 3D assets and
enable both physical post-optimization and accurate evaluation of physical metrics. To this end, we
build our executor on top of Infinigen [14] and Blender. At each iteration t, the executor loads the
previous scene and the layout modifications proposed by tool dt, then retrieves and replaces object
instances with 3D meshes from a collected asset pool combining Objaverse [33], 3D-Future [34],
Inifinigen [14], etc., depending on the tool. To ensure spatial consistency with relationships or
constraints generated by detail refiner tools, the executor also adjusts object placements to satisfy
relational constraints (e.g., aligning chairs to face desks) produced by the detail refiner. It then
performs a fixed number of physics-based optimization steps to resolve collisions and boundary
violations. We provide additional implementation details in Sec. A.5.

4 Experiment

In our experiments, we aim to answer the following questions: Q1: How does SCENEWEAVER
perform compared to existing data-driven and open-vocabulary scene synthesis methods? Q2: How
does the reflective agentic framework behave during the iterative scene refinement? Q3: How
effective is each module in SCENEWEAVER, and how critical are they to overall performance?

Settings We quantitatively evaluate SCENEWEAVER against existing methods under two primary
settings: 1) common room types, where large-scale human-designed datasets support direct data-
driven learning, and 2) open-vocabulary scene generation, following [8], which evaluates generation
across diverse room type descriptions. In the common setting, models are evaluated based on the
average score over 10 scenes each for the living room and bedroom categories. In the open-vocabulary
setting, evaluation is based on the average score over 3 scenes for each of 8 room types, using the
prompt “Design me a <room_type>” as the user query. We also include a setting with complex
queries to assess SCENEWEAVER’s fine-grained controllability over scene generation, with details
provided in Sec. 4.3. For all settings, we set the maximum number of iterations in SCENEWEAVER to
10. The memory length is set to 1 to avoid hallucination. We provide additional experimental details
in Sec. B.

Baselines For the common settings, we compare with data-driven scene synthesis models including
ATISS [15], DiffuScene [2], and PhyScene [3]. For these three methods, we train the model
over the 3D-Front [16] dataset following the conventional learning evaluation schemes. We also
compare with state-of-the-art open-vocabulary 3D scene synthesis methods including LayoutGPT [9],
Holodeck [10], and I-Design [7] on both the common and the open-vocabulary setting. As LayoutGPT
was originally limited to bedrooms and living rooms, we adapt it to open-vocabulary room types by
modifying its prompts and constraints. To evaluate the final scene quality, we retrieve assets from
Objaverse [33] using OpenShape [35] text embeddings following [7].
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Table 2: Quantitative comparison on common room types between SCENEWEAVER and existing scene
synthesis methods. For LLM-based methods, we use “Design me a <room_type>” as the user query.

Method

Bedroom Living Room

Physcis Visual & Semantics Physcis Visual & Semantics

#Obj ↑ #OB ↓ #CN ↓ Real. ↑ Func. ↑ Lay.↑ Comp. ↑ #Obj ↑ #OB ↓ #CN ↓ Real. ↑ Funtc. ↑ Lay.↑ Comp. ↑

ATISS [15] 3.9 0.5 0.6 7.4 7.1 6.6 4.2 7.8 0.1 0.7 5.8 5.3 6.4 3.7
DiffuScene [2] 3.5 0.1 1.1 6.5 7.0 6.7 3.6 6.9 0.5 1.2 5.5 4.9 5.2 3.5
PhyScene [3] 3.3 0.1 0.3 5.7 6.3 5.7 4.0 8.0 0.0 0.7 5.2 5.3 5.1 3.3

LayoutGPT [9] 5.4 1.0 1.3 7.5 8.1 6.7 4.2 8.4 1.1 2.8 6.4 5.8 5.2 3.6
Holodeck [10] 32.2 0.0 38.5 8.6 9.1 7.8 6.2 23.0 0.0 5.3 8.9 9.3 7.6 8.1
I-Design [7] 9.6 0.0 0.0 8.6 9.3 7.6 6.1 9.7 0.0 0.0 8.4 8.9 7.7 5.9

Ours 14.0 0.0 0.0 9.2 9.8 8.4 9.4 17.3 0.0 0.0 9.1 9.5 8.0 8.7

Table 3: Quantitative comparison on open-vocabulary generation between SCENEWEAVER and existing
methods. We report the average score across 8 scene types to evaluate overall model performance.

Method
Bathroom Children Room Gym

#Obj #OB #CN Real. Func. Lay. Comp. #Obj #OB #CN Real. Func. Lay. Comp. #Obj #OB #CN Real. Func. Lay. Comp.

LayoutGPT 7.7 1.3 1.0 8.3 9.3 7.7 6.0 7.3 1.0 0.7 6.3 8.0 6.0 4.0 6.7 0.7 0.0 6.7 6.7 5.7 3.7
Holodeck 12.0 0.0 1.7 7.7 6.7 7.0 5.3 13.7 0.0 2.0 7.5 7.5 6.5 5.5 20.3 0.0 5.3 9.7 9.3 6.7 6.0
I-Design 9.7 0.0 0.0 7.4 7.2 7.4 5.4 11.3 0.0 0.0 7.8 8.3 6.8 5.5 12.0 0.0 0.8 8.2 8.4 7.0 5.2

Ours 19.7 0.0 0.0 9.0 10.0 8.0 9.0 23.0 0.0 0.0 9.0 10.0 8.3 8.3 29.7 0.0 0.0 9.0 10.0 8.0 7.3

Method
Meeting Room Office Restaurant

#Obj #OB #CN Real. Func. Lay. Comp. #Obj #OB #CN Real. Func. Lay. Comp. #Obj #OB #CN Real. Func. Lay. Comp.

LayoutGPT 7.3 1.0 0.7 4.0 3.0 5.3 2.0 7.3 0.3 0.0 6.7 7.7 6.3 4.0 7.0 0.3 1.7 3.3 2.3 4.7 2.0
Holodeck 27.0 0.0 0.3 9.0 10.0 8.0 7.0 27.0 0.0 4.7 7.0 6.3 4.3 4.0 35.0 0.0 12.3 5.3 4.3 4.3 3.7
I-Design 18.7 5.3 0.0 6.0 4.5 5.8 4.3 11.7 0.0 0.0 8.0 9.0 6.8 5.4 27.7 0.0 0.0 6.2 5.2 5.2 4.0

Ours 31.0 0.0 0.0 9.0 9.0 7.7 8.0 40.0 0.0 0.0 9.0 10.0 8.0 8.7 88.0 0.0 0.0 7.3 7.0 6.5 7.3

Method
Waiting Room Kitchen Average

#Obj #OB #CN Real. Func. Lay. Comp. #Obj #OB #CN Real. Func. Lay. Comp. #Obj #OB #CN Real. Func. Lay. Comp.

LayoutGPT 6.3 0.0 0.3 6.7 5.7 6.0 4.0 7.7 1.3 1.3 5.7 6.3 4.7 3.7 7.3 0.7 0.7 6.0 6.1 5.8 3.7
Holodeck 24.0 0.0 3.7 8.3 9.3 6.7 5.7 20.0 0.0 1.3 7.3 6.3 6.3 4.3 22.3 0.0 3.9 7.7 7.5 6.2 5.2
I-Design 10.7 0.0 0.0 6.6 6.4 5.8 4.2 11.7 0.0 0.0 6.5 6.8 5.3 3.5 14.3 0.7 0.1 7.1 7.0 6.2 4.7

Ours 25.7 0.0 0.0 9.0 10.0 8.0 7.7 34.7 0.0 0.0 9.0 9.3 7.3 7.7 36.5 0.0 0.0 8.8 9.4 7.7 8.0

Metrics For all quantitative evaluations, we evaluate models using physical, visual, and semantic
metrics following [3, 7]. For physical evaluation, we report the average number of objects in the scene
(#Obj), out-of-boundary objects (#OB), and collided object pairs (#CN) as the main metrics to assess
physical plausibility and realism of the scene. For visual and semantic evaluation, we report scores
for visual realism (Real.), functionality (Func.), layout correctness (Lay.), and scene completeness
(Comp.) as indicators of visual quality and semantic coherence with the user query. Following [7, 8],
we use GPT-4 to assess these metrics, providing it with top-down renderings of the generated scenes
and the user query as input. To further assess objects’ stability in simulation, we evaluate the shift
distance in supplementary.

4.1 Scene Generation for Common Room Types

We provide quantitative evaluation results for the living room and bedroom in Tab. 2. Results
show that SCENEWEAVER achieves state-of-the-art results across most metrics, outperforming both
data-driven generative models and open-vocabulary models. Notably, Holodeck slightly surpasses
SCENEWEAVER in the number of objects (#Obj=32.2). However, we argue that this is primarily
due to the inclusion of randomly placed objects, often lacking rationality in object placement. Data-
driven methods tend to generate scenes with fewer objects, as their training datasets are largely
composed of large furniture items. Consequently, their visual and semantic scores are also lower due
to the limited quality and diversity of the training dataset. Interestingly, we observe that data-driven
methods outperform LayoutGPT on physical metrics, suggesting that relying solely on LLM-based
generation is insufficient for ensuring physical plausibility. In contrast, our LLM-based agentic
framework, empowered by reflection and physics-based optimization, achieves zero physical errors,
which is comparable to pipelines that enforce hard constraints during optimization (e.g., Holodeck).
A qualitative comparison of generated scenes is provided in Fig. 4.

4.2 Open-vocabulary Scene Generation

We present quantitative evaluation results in Tab. 3. The results show that SCENEWEAVER sig-
nificantly outperforms existing open-vocabulary scene generation methods across all eight tested
room types. It achieves an average object count of 36.5, notably higher than other approaches, and

7



LayoutGPT Holodeck I-Design
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Meeting 
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Restaurant
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Living
Room

Figure 4: Qualitative comparison between SCENEWEAVER and existing methods on both synthesizing
common room types and open-vocabulary room types. SCENEWEAVER produces scenes with improved visual
realism and finer-grained detail compared to prior methods.

also achieves significantly better visual and semantic scores. More importantly, SCENEWEAVER
accomplishes these improvements while strictly satisfying physical constraints (i.e., achieving zero
collisions and out-of-boundary violations). This highlights the effectiveness of the reflective planner
in both improving semantic coherence with the user query, scene diversity, and in fixing physical
implausibilities in the iterative refinement process. We provide qualitative comparisons against other
methods in Fig. 4 to further demonstrate the superior visual realism and semantic coherence of
scenes generated by SCENEWEAVER. Overall, both quantitative and qualitative metrics confirm that
SCENEWEAVER consistently outperforms existing methods on open-vocabulary scene generation,
highlighting the effectiveness of our reflective agentic framework.

4.3 Additional Analyses

Ablation on Agent Design We conduct an ablation study on agent design by evaluating variants
of SCENEWEAVER on the average of three kitchen scenes following the open-vocabulary scene
generation setting. Specifically, we consider the following variants: 1) removing the reflection
module (w/o Reflection), 2) removing the physical optimization module (w/o Phys. Optim.), and
3) replacing iterative reflection with a single-shot multi-step planning (Multi-step Plan). As shown
in Tab. 4, removing the reflection module results in a notable drop in semantic quality, while omitting
physical optimization significantly harms physical plausibility. Additionally, compared to the multi-
step planning variant, SCENEWEAVER achieves superior visual and semantic performance. This
highlights the importance of iterative reflection, as single-pass planning often generates globally
inconsistent or locally infeasible layouts by failing to account for context-dependent refinements.

Effectiveness of Tool Cards To evaluate the impact of different tool types, we ablate the use
of specific subsets from our tool set during scene generation. As shown in Tab. 5, adding or
removing particular tool types significantly affects performance across all metrics, demonstrating the
importance of tool diversity and validating the design of our standardized Specifically, we observe
that modifier tools help align scenes with functional requirements and improve layout coherence, but
may reduce object count (16.3 vs. 23.0) and completeness (5.0 vs. 5.7) by removing redundant items.
In contrast, implementer tools excel at enriching scenes with appropriate details, enhancing realism,
functionality, and completeness. The full combination of initializer, implementer, and modifier
tools yields the highest performance, highlighting the complementary strengths of diverse tools in
achieving high-quality 3D scene synthesis.
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Table 4: Ablation on Agent Design.
Method #Obj #OB #CN Real. Func. Lay. Comp.

w/o Reflection 25.0 0.0 0.0 8.0 8.3 6.3 6.3
w/o Phys. Optim. 27.3 0.7 2.0 8.3 9.3 6.7 7.7

Multi-step Plan 29.3 0.0 0.0 8.3 7.7 7.0 7.3
Ours 34.7 0.0 0.0 9.0 9.3 7.3 7.7

Table 5: Ablation on Effectiveness of Tools.
Tools #Obj Real. Func. Lay. Comp.

Init. 23.0 7.7 7.0 6.0 5.7
Init+Modifier 16.3 7.7 8.3 6.3 5.0
Init+Implem. 34.3 8.0 8.3 6.3 7.3

Full 34.7 9.0 9.3 7.3 7.7

Implementer:
Add objects on the 
washing machine.

Initializer:
Init a basic 

scene.

1 Implementer:
Add objects on 

the shelf. 

Refiner:
Resize objects 
on the shelf.

Refiner:
Add objects 
in the shelf.

2 3 4 5 Finish:
Finalize room structure 

and texture.

6

Query:  A laundromat with 10 machines. Add washing supplies on each machine. Add other related objects, such as baskets, and washthub in the room. 

Initializer:
Init a basic scene.
1 Modifier:

move objects to 
avoid crowded.

2 Implementer:
Add objects on 
the supporter.

3 Implementer:
Add decorations 

on the wall.

4 Finish:
Finalize room 

structure and texture.

5

Query:  A bedroom rich of furniture, decoration on the wall, and small objects.

Figure 5: Iterative refinement in SCENEWEAVER given complex user queries. SCENEWEAVER progressively
incorporates detailed elements specified in the user instruction, demonstrating its ability to iteratively refine and
generate high-quality, instruction-aligned 3D scenes (best viewed with zoom-in).

Iterative Refinement in SCENEWEAVER with Complex Queries When presented with complex
user instructions, SCENEWEAVER leverages iterative refinement to better follow detailed require-
ments, particularly in object count, small object placement, and overall scene layout. We provide two
qualitative examples of the iterative refinement procedure in Fig. 5 to illustrate this capability.

Table 6: Human Evaluation Results.

Method #Obj Real. Func. Lay. Comp.

LayoutGPT 5.94 5.83 6.21 5.26 5.99
I-Design 7.20 6.65 6.57 5.73 6.79
Holodeck 7.86 6.70 7.35 6.67 7.45

Ours 9.30 8.80 8.85 8.55 8.98
Table 7: Preference and diversity over other models.

Method w/ I-Design w/ Holodeck w/ LayoutGPT

Preference 94.30% 91.40% 87.40%
Diversity 95.60% 98.90% 90.00%

Human Study To further assess the quality of
scenes generated by SCENEWEAVER, we con-
duct a human study with twenty participants.
Each participant evaluates five scenes randomly
from the open-vocabulary scene generation set-
ting using the metrics following Sec. 4.2. As
shown in Tab. 6, SCENEWEAVER consistently
outperforms baseline models across all dimen-
sions. And the Human-LLM alignment is shown
in supplementary. Additionally, we conduct a
pairwise comparison study, where participants
indicate their preference and check diversity be-
tween scenes (3 for each room type) generated by SCENEWEAVER and baseline methods. Results
in Tab. 7 show that SCENEWEAVER is preferred in nearly 85% of cases. These findings underscore
the strength of SCENEWEAVER in producing visually and semantically coherent indoor scenes.

5 Conclusion

In this work, we present SCENEWEAVER, a reflective and extensible agentic framework for 3D scene
synthesis that integrates diverse scene synthesis paradigms through standardized tool interfaces and
iterative feedback-driven refinement. By adopting a reason–act–reflect paradigm, SCENEWEAVER
enables an LLM-based planner to dynamically select and invoke appropriate tools, guided by multi-
modal self-evaluation of physical plausibility, visual realism, and instruction alignment. This closed-
loop design allows SCENEWEAVER to effectively decompose and correct complex generation tasks,
achieving superior performance across both common and open-vocabulary scene settings. Extensive
experiments and human evaluations validate the advantages of our approach in producing high-quality,
functionally coherent, and semantically faithful 3D scenes. We believe SCENEWEAVER represents a
step toward general-purpose, controllable 3D environment generation, with broad implications for
Embodied AI, simulation, and interactive agents.
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A Details of the SCENEWEAVER Framework

A.1 Scene Representation

As mentioned in method, the 3D scene at each step is represented by a combination of 3D layout
data and a 2D rendering. The details are illustrated in Fig. A1. On the left, we show a top-down
rendering of the scene in Blender, which helps align the visual representation with the coordinate-
based layout shown on the right. To enrich the spatial understanding, we mark the image with X,
Y, and Z coordinate axes at the coordinate origin and 2D projection coordinates on (x,y) plane to
emphasize the spatial position. Each object is further labeled with its 3D bounding box and semantic
category to assist the agent in object recognition. We also mark each object with a 3D bounding box
and its semantic label to help agent recognize each object. Since visual language models (VLMs)
may struggle with spatial reasoning—particularly object orientation—we additionally annotate each
bounding box with a directional arrow indicating the object’s front. On the right side, the layout
encodes each object’s semantic category as the key, with its location, rotation, and size as values.
We also record relational information for each object, including its parent object and the type of
relationship.

Figure A1: Example Scene Representation. To convey both visual and logical information of the current scene,
we express the scene data in two representations: 1) a top-down rendered image It (left) with coordinate points,
axies-arrow and objects’ 3D bounding boxes with labels and direction arrow and 2) the objects’ layout Lt (right)
including open-vocabulary category name, location, rotation, size and relation between objects.

A.2 Self-reflective Planner

We provide the full prompt to the self-reflective planner and feedback mechanism in Tabs. A1 and A2.

A.3 Implementation of the executor

We take Infinigen as the base code of our executor. And we apply multiple modifications on it to fit
our agentic framework. Specifically, we update the code to:

• update iteratively

• interactive in blender in realtime with socker

• fit each tool rather than generating scene procedurelly

• do physical optimization to avoid collision and enhance relation

• add 3D marks and 2D top-down rendering after generation

• . . .
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Table A1: Prompt for planner.

Prompt for Planner

Task description: You are a scene designer, an expert agent in 3D scene generation and spatial
optimization. Your mission is to iteratively design and refine a scene to maximize its realism,
accuracy, and controllability, while respecting spatial logic and scene constraints.

Note: Given a user prompt, carefully inspect the current configuration and determine the best
action to build or enhance the scene structure. You should list all the effective optimization
strategy for the next step based solely on geometry, layout relationships, and functional
arrangement. You must not focus on style, texture, or aesthetic appearance. To achieve the best
results, combine multiple methods over several iterations. Start with a foundational layout and
refine it progressively with finer details.

Available Tools: {metadata of available tools}

User demand: {user_demand}

Memory of stept−1:

• {planning ideas}
• {tool selection & execution results}
• {scene representation}
• {reflection score & suggestion}

Plan for stept:
Based on user needs and current status:

• Clearly explain the execution results of last step and tool.
• According to scene information and evaluation result, check if previous problems have

been solved.
• According to evaluation result, which GPT score is the lowest? What physical problem

does it have?
• Find the most serious problem to solve.

To solve the problem, list all the appropriate tools that can match the requirement for next step
with 0-1 confidence score:

• You should consider the suggestion from previous conversation to score each tool.
• If the same problem has not been solved by last step, you should consider degrade the

score of the tool in the last step.
• You should carefully check current scene, and you MUST obey the relation of each

object. If there is no previous step, init the scene.
• For complex tasks, you can break down the problem and use different tools step by step

to solve it, but you only choose and execute the suitable tool for this step.
• When multiple tools are applicable to solve the user’s request, list them with confidence

score.
You must choose one tool for this step. Clearly explain the expectation and suggest the next
steps. If there is no big problem to address, or if only slight improvements can be made, or if
further changes could worsen the scene, stop making modifications.
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Table A2: Prompt for Verifier.

Prompt for Verifier

Task You are given a top-down room render image and the corresponding layout of each object. Your
task is to evaluate how well they align with the user’s preferences across the four criteria listed below. For
each criterion, assign a score from 0 to 10, and provide a brief justification for your rating. Scoring must
be strict. If any critical issue is found (such as missing key objects, obvious layout errors, or unrealistic
elements), the score should be significantly lowered, even if other aspects are fine.
Score Guidelines

• Score 10: Fully meets or exceeds expectations; no major improvements needed.

• Score 5: Partially meets expectations; some obvious flaws exist that limit usefulness.

• Score 0: Completely fails to meet expectations; the aspect is absent, wrong, or contradicts user
needs.

Evaluation Criteria
1. Realism: How realistic the room appears. Ignore texture, lighting, and doors.

• Good (8-10): The layout (position, rotation, and size) is believable, and common daily
objects make the room feel lived-in. Rich of daily furniture and objects.

• Bad (0-3): Unusual objects or strange placements make the room unrealistic.
• Note: If object types or combinations defy real-world logic (e.g., bathtubs in bedrooms),

score should be below 5.

2. Functionality: How well the room supports the intended activities.

• Good (8-10): Contains the necessary furniture and setup for the specified function.
• Bad (0-3): Missing key objects or contains mismatched furniture (e.g., no bed in a

bedroom).
• Note: Even one missing critical item should lower the score below 6.

3. Layout: Whether the furniture is arranged logically in good pose and aligns with the user’s
preferences.

• Good (8-10): Each objects is in reasonable size, neatly placed, objects of the same category
are well aglined, relationships are reasonable (e.g., chairs face desks), sufficient space
exists for walking, and orientations must be correct.

• Bad (0-3): Floating objects, crowded floor, abnormal size, objects with collision, incorrect
orientation, or large items placed oddly (e.g., sofa not against the wall). Large empty space.
Blocker in front of furniture.

• Note: If the room has layout issues that affect use, it should not score above 5.

4. Completion: How complete and finished the room feels.

• Good (8-10):All necessary large and small items are present. Has rich details. Each shelf
has multiple objects inside. Each supporter (e.g. table, desk, and shelf) has small objects
on it. Empty area is less than 50%. The room feels done.

• Bad (0-3): Room is sparse or empty, lacks decor or key elements.
• Note: If more than 50% of the room is blank or lack detail, score under 5.

User demand {user_demand}
Rendered Image {rendered_image It}
Room layout {layout Lt}
Results Return the results in the following JSON format, the comment should be short:

{ "realism": {
"grade": your grade as int,
"comment": "Your comment and suggestion."

},
"functionality": {...},
"layout": {...},
"completion": {...}}

A.4 Tool Cards

We provide detailed prompts to all tools in Tabs. A8–A17. And we list the implementation details of
each tool in Tab. A3. During the planning process, the agent is provided with a brief description of
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Figure A2: Robot interacts with the scene generated by SCENEWEAVER in simulation. The first three rows
show the sequences of interaction in the front view in three different scenes including kitchen, meeting room and
restaurant. And the last row shows the side view of the third row. Note the system keeps different materials,
such as table in the meeting room has transparent and reflective material.

each tool and uses the function calling to choose a single tool for each step. Then it will run the tool
itself and go through the executor to update the scene.

A.5 Physics-aware Executor

Referring to Infinigen, the relation types here include two aspects.

1. Relation between the object and room:
• <against_wall>: the object’s back faces to the wall, and stands very close or exactly on the

wall.
• <side_against_wall>: the object’s side (left, right, or front) faces to the wall, and stands

very close.
• <on_floor>: the object stands on the ground.

2. Relation between two objects:
• <front_against>: the child object’s front faces to the parent object, and stands very close,

such as chair and dining table.
• <front_to_front>: the child object’s front faces to the parent object’s front, and stands very

close, such as chair and desk, coffee table and sofa.
• <leftright_to_leftright>: the child object’s left or right faces to the parent object’s left

or right, and stands very close.
• <side_by_side>: the child object’s side (left, right , or front) faces to the parent object’s side

(left, right , or front), and stands very close.
• <back_to_back>: the child object’s back faces to the parent object’s back, and stands very

close.
• <on_top>: the child object is placed on the top of the parent object, such as monitor and desk,

vase and table.
• <inside>: the child object is placed inside the parent object, such as book inside shelf.

A.6 How to choose assets dataset

In this project, we choose different asset according to the usage of tool. You can also choose any of
them to suit your own requirements.
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Table A3: Tool Overview and Contributions.
Tool Name Role Use of Existing Works Our Contribution
Init MetaScenes Init scene with

Real2Sim dataset
MetaScenes Choose data & con-

vert format
Init PhyScene Init scene with pre-

trained model
PhyScene / DiffuScene
/ ATISS

Choose data & con-
vert format

Init GPT Init scene with GPT LLM Prompt engineering
Add ACDC Add tabletop objects

visually
Stable Diffusion &
ACDC

Significant changes
on digital cousin

Add GPT Add objects with
GPT

VLM Prompt engineering

Add Crowd Add crowded layout VLM & Infinigen Utilize Infinigen rules
& design module

Remove Object Remove inappropri-
ate Object

VLM Prompt engineering

Add Relation Add relations to ob-
jects

VLM & Infinigen Prompt engineering
& Utilize Infinigen re-
lations

Update Rotation Fix rotation problems VLM Prompt engineering
Update Size Rescale objects VLM Prompt engineering
Update Layout Update improper lay-

outs
VLM Prompt engineering

MetaScenes: For tool using Dataset such as MetaScenes, we employ its assets directly, since each
scene contains several assets with delicated mesh and layout information.

3D FUTURE: For tool using Model such as PhyScene / DiffuScene / ATISS, we employ 3D
FUTURE, since the model is trained on this dataset.

Infinigen: For other tools, we use Infinigen’s asset generation code to generate standard assets in
common categories, such as bed, sofa, and plate. The asset will be generated in a delicated rule
procedure in the scene generation process.

Objaverse: For those categories that are not supported by Infinigen, such as clock, laptop, and
washing machine, we employ open-vocabulary Objaverse dataset.

B Experiments

B.1 Additional Experimental Details

The maximum number of steps is set to 10. However, the procedure may terminate earlier if the
intermediate results already meet the user’s requirements with a high score. The reflection module
determines whether to continue optimizing or stop.

For asset retrieval, we gather resources from available tools when possible. For instance, when using
tools based on data-driven methods, we adopt 3D-FUTURE assets. If no assets are provided, we
first rely on the Infinigen generator to produce standard assets following predefined rules. For more
open-vocabulary assets, we refer to OpenShape to retrieve objects from Objaverse. In cases where
assets lack a unified initial pose, we calculate their minimum bounding rectangles to identify four
side candidates, then prompt GPT to annotate the front-facing direction. GPT achieves a high success
rate in identifying the front side of commonly known objects, though it may fail for more complex
or ambiguous cases. For the ablation study, we focus on the kitchen room type and generate three
scenes for the experimental setting.

B.2 Additional Scene Generation Results

We show more visualization results of SCENEWEAVER in Fig. A3. The results of restaurant, garage,
and gym confirm that SCENEWEAVER is able to arrange multiple objects neatly when the number of
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Design me a gym.

Design me a restaurant.

A laundromat with 10 machines. Add washing 
supplies on each machine. Add other related 

objects, such as baskets, and washthub in the 
room. 

A bedroom rich of furniture, decoration 
on the wall, and small objects.

Design me a bathroom.

Design me a meeting room.

Design me an office.

Design me a children room.

A garage with a car in the center. Add a work 
bench and shelf with related tools. 

Figure A3: More visualization examples of generated scenes.

the same category is more than three. Cabinet in the bathroom contains objects inside, such as a roll
of paper, since it has supporting surface in the plane inside. Shelves are equipped with related objects
inside (basket in garage and towel in gym). The third row shows some detailed results of complex
user queries.

B.3 Simulation in Isaac Sim

We export the generated scenes as USD files and load them into Isaac Sim for physical simulation
and interactive tasks. Through Apple Vision Pro, we remotely control a Unitree G1 humanoid robot
to perform object interactions within these virtual environments. As demonstrated in Fig. A2 and
our supplementary video, the system supports diverse interaction scenarios across multiple scenes:
the first three rows showcase interaction sequences from a front-view perspective, while the last
row provides a side-view analysis of the third scene. This pipeline offers three key advantages for
embodied AI applications:

• High-fidelity simulation with preserved textures and geometric details.
• Robust physical interactions guaranteed by collision-free and boundary-constrained object place-

ment.
• Task-aligned scene layouts that adapt to diverse EAI requirements through controllable synthesis.

With the combination of these features, we believe SCENEWEAVER enables reliable sim-to-real
transfer for robotic manipulation tasks while maintaining visual and functional realism.

B.4 User Study

We invited twenty participants to evaluate the scenes generated by SCENEWEAVER. All participants
were volunteers without compensation. We invite them to assess the scenes in two settings.
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Table A4: Score alignment. To further confirm the stability of LLM’s judgement and human study, we check
the alignment between different users as well as LLM

Method Realism ↑ Functionality ↑ Layout ↑ Completion ↑
User-User 0.43 0.42 0.45 0.40
User-LLM 0.46 0.45 0.48 0.55

(a) The first setting to score each scene. (b) The second setting for pairwise comparison.
Figure A4: Example of user study in different settings.

In the first setting, we randomly collected 100 scenes generated by three baseline methods and
SCENEWEAVER. Each volunteer was randomly assigned 20 scenes along with their corresponding
prompts. Participants were asked to rate each scene on a scale from 1 to 10 using the same five
metrics described in the experiment. Note that physical metrics such as collision count (#CN) and
out-of-boundary objects (#OB) were excluded from this human evaluation, as they are difficult to
assess by eye. For each of the five remaining metrics, we provided a guiding sentence to help
participants make consistent and informed judgments. Finally, we aggregated the ratings from all
participants and computed the average score for each metric.

In the second setting, we conducted a pairwise comparison study, shown in Fig. A4b. For each
baseline method, we selected five set of scenes, where each set includes three scenes generated by
SCENEWEAVER and three scenes generated by the baseline method under the same prompt. We
increased the generated scene number from 1 to 3 for each method in order to 1) reduce individual
variance and 2) check diversity of different generation system. We asked the participants to choose:

• Which method do you prefer?
• Which method has greater diversity?

We collected votes from all participants and calculated the average preference between SCE-
NEWEAVER and each baseline method. Results in Tab. 7 shows our methods has greater diversity
while also stand for higher preference, surpassing other methods to a large degree.

B.5 Human-LLM Alignment.

Note the evaluation results of human evaluation and LLM score can not be exactly the same, thus
a slight difference between them is a normal phenomenom. To further confirm the stability of
these justification methods, we check the alignment between different users and LLM. We convert
the users’ and LLM’s scores on different scenes to rankings and calculate Kendall’s Tau for the 4
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Table A5: Shift in simulation. We assess object stability in simulation in Isaac Sim.

Method >0.1m ↓ >0.01m ↓ Average Shift ↓
ATISS 35.4% 51.4% 0.356

DiffuScene 26.2% 39.3% 0.190
PhyScene 9.7% 19.6% 0.069

LayoutGPT 39.2% 52.8% 0.477
IDesign 5.0% 11.5% 0.041

Holodeck 17.6% 42.5% 0.113
Ours 1.0% 10.37% 0.011

Table A6: An example of metric improvement during iteration.
Step Tool Realism ↑ Functionality ↑ Layout ↑ Completion ↑

1 Initializer 6 6 5 4
2 Implementer 7 6 5 4
3 Refiner 8 7 6 6
4 Refiner 8 7 8 6
5 Implementer 8 7 8 8

metrics, shown in Tab. A4. The results show strong user-user agreement and user-LLM agreement
on different metrics. And we find that user-LLM has higher alignment scores than user-user, which
indicates that LLM is more stable than user in evaluation. These alignment results also demonstrate
the effectiveness of using LLM for justification in Tab. 3 of the main paper.

B.6 Physical Stability

To assess object stability in simulation, we measure:

• Shift thresholds: percentage of objects moving >0.1m or >0.01m in 3s
• Average displacement: Mean shift distance (meters)

As shown in Tab. A5, the lowest shift of our methods confirms our great performance on the original
physical metrics #OB and #CN. Above all, our generated scene remains the most stable in simulation
although with the largest object number.

B.7 Metric improvement during iteration.

The overall is self-adaptive rather than coarse-to-fine object placement. The agent in our pipeline will
find the biggest problem in each iteration according to the reflection score and choose related tool to
solve the problem. For example, the teaser in Fig. 1 serves as an obvious example. Here we show the
metric scores after executing each step in Tab. A6.

The agent chooses the lowest score to improve. Specifically, step 1 has the lowest score in completion,
which is 4. Then in the step 2, the agent chooses the implementer to add objects in the shelf and
improve the completion score from 4 to 6. Now the lowest score is the layout, which is 5, owing
to the illogical location of bathroom sink. So in step 3, it uses refiner to remove the bathroom
sink, improving the layout score from 5 to 6. So now the lowest score belongs to both layout and
completion. In step 4, the agent focuses on the crowding area and decides to use refiner to rearrange
the dining tables to ensure adequate space for movement and clear walkways. Then the score of
layout becomes 8. The lowest score comes to the completion again. So the agent choose implementer
again to add objects on each table to improve the completion score.

The scores of realism and functionality will also be improved while we focus on optimizing other
metrics. And the agent can fix the problem caused by previous steps, such as removing the bathroom
sink generated by the previous step. And it can utilize the same tool multiple times to improve the
quality until it satisfies the demand.
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Figure A5: Adding room structure including door and windows. We show two samples of scene generation
with room structures. Each sample includes views from both outside and inside.

Table A7: Improvement on the scenes generated by baseline models.
Method #Obj ↑ Realism ↑ Functionality ↑ Layout ↑ Completion ↑

PhyScene 5 7 8 6 5
PhyScene + Ours 11 9 10 8 9

LayoutGPT 6 7 8 6 5
LayoutGPT + Ours 20 9 9 8 10

B.8 Impact of a single tool

Tab. 5 shows that the addition of different types of tools (Initializer, Refiner, Implementor) greatly
improves the results. To further assess the effect of a single tool, we observe that without the "Update
Rotation tool, the model is less sensitive to invalid rotations, reducing the "layout" score. Meanwhile,
the "Add Crowd" tool lets supporters be densely filled with child objects (e.g., a shelf packed with
books), which improves "realism". If there are multiple tools in similar function, adding/removing a
single tool will not make a big difference. And if the tool has a negative effect, the agent with the
memory and reflection module will recognize it during iterations and avoid using the tool.

B.9 Room Structure & Single Room Scale

In the main paper, we remove windows and doors to simplify the generation process, though our
method can handle such structures and update the scene accordingly. Here we show some examples
in Fig. A5.

For room scale, we focus on single rooms to improve scene quality as prompted by the user. The
process can be repeated to handle multiple rooms. We could also generate multi-room scenes at once
with some coordinate transformation.

B.10 Refine scenes generated by baseline methods

Here we refine scenes generated by two baseline methods, PhyScene and LayoutGPT. (IDesign
and Holodeck will take longer time in format conversion.) Results show our method could greatly
improve the baseline method. Actually the baseline method serves as an initializer tool in this setting,
and we can convert each baseline method to a new tool and merge them into the extensible tool cards.

C Miscellaneous

C.1 Claims in Tab. 1

Here we clarify criteria dicussed in Tab. 1.

Real Defined as realistic layouts considering human daily habits.

Large-scale Methods able to generate infinite scene variations.

A9



Accurate Methods with well-defined rules ensuring explicit object relations and strict placement.

For example, Infinigen’s realism relies on simple rule, texture and rendering, but layout issues remain:
(1) monitors may face walls, as placement rules lack direction awareness; (2) random sampling
without spatial priors can scatter desks. Therefore, we do not consider Infinigen "real".

C.2 Broader Impact

Our work focuses on 3D scene synthesis, aiming to generate physically interactable environments
based on complex, user-specific instructions. A key application lies in the development of embodied
artificial intelligence, where such synthesized scenes can be used to train agents across diverse tasks.
Furthermore, the overall architecture of SCENEWEAVER is grounded in recent LLM-based tool-use
agent frameworks, positioning it to inspire future agentic systems tailored to specific use cases. This
includes the design of task-specialized components such as system prompts and interaction protocols
for enhanced application-specific performance. At present, we do not anticipate any immediate
negative societal impacts resulting from SCENEWEAVER.

C.3 Resources used

All reported experiments are conducted on a machine equipped with an NVIDIA GeForce RTX 4090
GPU. To generate a scene, the time consumption ranges from minutes to hours, depending on the
iteration number, chosen tools, and crowded status. We use Blender 3.6 to record and render the
scene.

C.4 Time Consumption

The time consumption is a bit longer due to several reasons. First, different method takes different
time. For example, the data-driven tool is fast, since the process is simple and the model is trained
in advance. While the 2D guided tool, such as ACDC, is slower, since the process is complex and
included several procedures including 2D segmentation, 3D reconstruction, assets matching, and
pose optimization. Another reason is that we add physical optimization in the executor to ensure the
physical plausibility in the geometric level, while previous work only consider the bounding box
level. The third reason is because we take several steps to develop a scene rather than a single step.

The average time for a single iteration is 8.6 minutes, and the average time for generating a complete
scene is 64 (min:35, max:130) minutes. Simpler and smaller room need less generation time. Here
are some choices to reduce the time cost:

• reduce the usage frequency of the physical optimization

• remove some time-consuming tools, such as digital cousins. Although the results will be
influenced, it will not cost too much drop.

• reduce the iteration number.

C.5 API Cost

The average iteration is about 7. The average API cost is about 0.5 dollar per scene. The relatively
higher cost come from well-designed agentic framework, making the great results on both physical
and visual & semantic metrics is irreplaceable by other methods. More diffusion steps or longer
Infinigen procedure will not change the difference.

Moreover, here are some choices to reduce the cost by:

• simpler requirements and smaller room size.

• reduce the usage frequency of the physical optimization.

• remove some time-consuming tools or replace with other effective tools.

• reduce the iteration number.

Note reducing iteration number will not affect the final result too much, since the scene achieves high
score quickly in the first few iterations. The rest iterations aim to fix corner cases and improve the
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score slightly. For example, the GPT score for bedroom is 8.6, 9.3, 7.5, 7 when we limited the steps
to 3, still better than the baseline methods.

D Limitation

D.1 Unrealistic Scaling & Placement for Functional Items

A small ratio of objects may look unreal in the scale and placement. This problem comes from the
non-standard open-vocabulary dataset in two points. On one side, the object in open-vocabulary
dataset such as Objaverse has no standard size, for example, a toy can be 10 meters in length. Thus
it is necessary to resize those assets to eliminate the gap and fit the realness. On the other side, the
front direction of the asset is not provided in the dataset, thus we utilize VLM to predict the front
direction, which we find with high success rate, but it still failed in some cases since sometimes the
front direction of the asset can not be defined uniformly, such as the elliptical bike, our expected
front direction is mistaken as the side direction, leading to unreasonable orientation and size. How to
balance the standardization and generality for the open-vocabulary dataset is an unsolved problem,
but it still provides a feasible and promising view for general scene synthesis.

D.2 Validity of LLM’s Judgement

To evaluate the generation system, human study stands for a fair choice, but it is very expensive to
scale. The LLM provides a cheaper, faster and more stable (as discussed in Sec. B.5) choice to
evaluate. Taking LLM for both generation and validation seems conflict, while here we consider it as
acceptable, since the LLM score is easy to acquire during generation and does not result in overfitting.
Previous work GPTEval3D [36] have also proved that VLM can serve as a Human-Aligned Evaluator
for Text-to-3D Generation. SceneCraft [37] also utilizes VLM to critic and revise the scene with
Blender script.

We acknowledge that LLMs are imperfect proxies for human judgment. Alternative scaffolds (e.g.,
rule-based metrics, heuristic checks, or hybrid human-AI pipelines)) exist but offer no clear advantage
in alignment or scalability. In the absence of better accessible evaluators, we treat LLM feedback
as a practical interim solution. And we remain hopeful that future research will yield more reliable,
scalable, and human-aligned evaluation paradigms.

Based on the current situation, we emphasize that, given an accessible LLM model to guide the
generation system, the key point is how to utilize the guidance and find a good way to improve
the scene quality. Using GPT’s judgments during iteration also demonstrates the unique ability our
reflective agentic framework. Other baseline methods with fixed pipelines and limited tools lack the
ability to adjust results based on evaluation scores or LLM feedback, while ours makes it possible to
iteratively refine scenes through feedback-driven planning with modular tools.
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Table A8: Metadata of Initializer: Real2Sim - MetaScene.

Initializer: Real2Sim - MetaScene: Metadata
Description Load the most related scene from the Real2Sim indoor scene dataset MetaScenes
as the basic scene. Ideal for generating foundational layouts for common room types.
Supported Room Types: living room, dining room, bedroom, bathroom, kitchen, hotel, office,
laundry room, and classroom.
Use Case 1 Create a foundational layout.
Strengths Provides a ready-made layout based on real-world data. Rich of details.
Weaknesses Fixed layout, need to modify with other methods to meet user demand.
Input Roomtype, Ideas to init the scene.

Table A9: Metadata of Initializer: Model - PhyScene.

Initializer: Model - PhyScene: Metadata

Description Using PhyScene, a neural network, to generate a scene as the basic scene. The
model is trained on the 3D Front indoor dataset.
Supported Room Types Living room, bedroom, and dining room.
Use Case 1 Create a foundational layout.
Strengths Room is clean and tidy. Assets in good quality.
Weaknesses Fixed layout with less details.
Input Roomtype, Ideas to init the scene.

Table A10: Metadata of Initializer: LLM - GPT.

Initializer: LLM - GPT: Metadata
Description Using GPT to generate the foundamental scene.
Supported Room Types any room type.
Use Case 1 Create an accurate and foundational layout.
Strengths Align well with user demand. More details. Highly versatile and capable of
generating scenes for any room type and complex user requirement. Flexible with respect to
room design and customization.
Weaknesses Less spatial rationality. May not be as real as data-driven and Real2Sim methods.
Input Roomtype, Ideas to init the scene.

Table A11: Metadata of Implementer: 2D Guided - ACDC.

Implementer: 2D Guided - ACDC: Metadata

Description Using image generation and 3D reconstruction to add additional objects into the
current scene.
Use Case 1 Add a group of small objects on the top of an empty and large furniture, such as a
table, cabinet, and desk when there is nothing on its top.
Strengths Real. Excellent for adding a group of objects with inter-relations on the top of a
large furniture.(e.g., enriching a tabletop), such as adding (laptop,mouse,keyboard) set on the
desk and (plate,spoon,food) set on the dining table. Accurate in rotation.
Weaknesses Can not add objects on the wall, ground, or ceiling. Can not add objects inside a
container, such as objects in the shelf. Can not add objects when there is already something on
the top.
Input Ideas to add objects.
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Table A12: Metadata of Implementer: LLM - GPT.

Implementer: Implementer: LLM - GPT: Metadata

Description Using GPT to add additional objects into the current scene.
Use Case 1 Add large objects in the current scene.
Use Case 2 Add 1-2 small objects on the top of small supporting furniture, such as nightstand
and cabinet, when there is enough space. (e.g., add a cup on the nightstand).
Use Case 3 Add several small objects on the top of large supporting furniture, such as dining
table and desk, when there is enough space. (e.g., add daily tableware on the dining table).
Use Case 4 Add several small objects inside the large furniture. (e.g., add books in the shelf).
Use Case 5 Add functional objects or decorations on the wall. (e.g., add painting, mirror, and
TV on the wall).
Strengths The location is accurate. Can add objects inside a container, such as objects in the
shelf.
Weaknesses The rotation of asset is not always accurate. Relation between small objects is not
clear. Can not modify objects in the current scene. Can not add objects on the ceiling.
Input Ideas to add objects.

Table A13: Metadata of Refiner: LLM - Remove Object.

Refiner: LLM - Remove Object: Metadata

Description Remove objects with GPT. Works with all room types.
Use Case 1 Remove redundant and unnecessary objects when the scene is crowded or when
there are too many objects. (e.g., eliminate a table in the corner)
Use Case 2 Remove objects that does not belongs to this roomtype. (e.g., eliminate the bed in
the dining room)
Use Case 3 Remove objects when the collision/outside problem has not been solved for several
attempts by other tools. (e.g., eliminate the object outside the room)
Use Case 4 Remove small objects (usually with collision or outside the supporting surface)
when their supporter or container has no enough space to support them. (e.g., eliminate some
small objects or when the nightstand is overloaded)
Strengths Excels at removing specific objects. Can solve collison and crowded problems
directly.
Weaknesses Can not add objects or replace objects. You must use this method carefully to
avoid mistaken deletion.
Input Ideas to remove objects.

Table A14: Metadata of Refiner: LLM&Rule - Add Relation. The relation types are introduced in Sec. A.5.

Refiner: LLM&Rule - Add Relation: Metadata
Description Add explicit relation between objects in the current scene according to the layout.
Sometimes the relation is encoded in the layout coordinate rather than represented explicitly,
making it difficult to manage. Explicit relations will make the scene more tidy.
Note: Each object can have only one parent object (except for the room). Do not add relation
between small objects.
The optional relations between objects are {relation_types}.
Use Case 1 Add explicit relation between large objects, according to the layout, to make the
scene better-organized.
Use Case 2 Add new relation between large objects, make the scene better-organized.
Use Case 3 Add againts_wall relation to large objects, make the objects stand against wall.
Use Case 4 Add floating small objects on/in a large object.
Strengths Can add relation between objects, make the scene tidy and well-organized quickly.
Weaknesses Can not fix the layout problem, such as placing the object into the right place
accurately.
Input Ideas to add relation.

A13



Table A15: Metadata of Refiner: VLM - Update Rotation.

Refiner: VLM - Update Rotation: Metadata

Description Adjust object rotations with GPT to optimize room layout.
Use Case 1 Fix incorrect object orientations, such as a bed facing the wall or a chair turned
away from a desk.
Use Case 2 Improve spatial organization by aligning objects more naturally with the room
structure or usage context (e.g., rotate a sofa to face a TV or a chair to face a table).
Strengths Helps improve the visual and functional coherence of a room. Can automatically
identify misaligned items and suggest better orientations based on typical room usage.
Weaknesses Does not move, add, or remove objects. Only focus on rotation.
Input Ideas to update rotation.

Table A16: Metadata of Refiner: LLM - Update Size.

Refiner: LLM - Update Size: Metadata

Description Modify Object Sizes with GPT. Best suited for significant size adjustments rather
than minor refinements.
Use Case 1 Resizing objects with abnormal proportions (e.g., an object on a table that is over
one meter tall).
Use Case 2 Scaling objects to meet functional requirements (e.g., enlarging a table when a
larger one is needed).
Strengths Effective at adjusting specific object sizes.
Weaknesses Cannot modify overall room dimensions. Should only be used when necessary
due to potential scene inconsistencies.
Input Ideas to update size.

Table A17: Metadata of Refiner: LLM - Update Layout.

Refiner: LLM - Update Layout: Metadata

Description Modify layout with GPT.
Use Case 1 Adjust objects’ placement when the objects are not well-placed.
Use Case 2 Change objects’ scale when the size does not match the requirement.
Strengths Excels at modifying specific objects. This method is not recommended for slight
layout adjustments. It is better suited for major changes when necessary.
Weaknesses Can not solve all the problem when the room is crowded. Poor in modify rotation.
May lack precision and occasionally overlook details. Can not obey the current relation, such as
move object away from the wall when the object is against wall. Can not add objects.
Input Ideas to update layout.
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